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Abstract

This article proposes a combined procedure of the Monte-Carlo and ®nite-volume method (CMCFVM) for
solving radiative heat transfer in absorbing, emitting, and isotropically scattering medium with an isolated boundary
heat source. The conventional ¯ux methods such as the ®nite volume and the discrete ordinate methods are known
to be a�icted by the ray e�ects due to its own angular discretization. Thereby, a wiggling behavior in the solution

used to take place. In order to tackle this problem, which is especially pronounced in a medium with an isolated
heat source, the CMCFVM is suggested here and successfully applied to a two-dimensional irregular
enclosure. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent years, a study of radiative heat transfer in

an irregular multidimensional geometry has received
increasing attention with the development of more
powerful computers. Its practical application resides in
a need to accurately predict the thermal behavior in

the heat exchanger and combustor. Therefore, several
methods have been developed to solve the radiative
transfer equation in the irregular geometry. Among

others, there is the ®nite-volume method (FVM) for
radiation [1,2] which has been successfully applied to
several problems of body-®tted geometries [3,4]. In the

meanwhile, the discrete ordinates method (DOM) was
also extended to handle a body-®tted geometry, and its

computational accuracy has been discussed [5]. Since
the spatial domain is divided into a ®nite number of

control volumes in the DOM and FVM, these methods
have a computational compatibility with other control-
volume based CFD approaches. While the DOM needs

a quadrature set associated with directions and
weights, the FVM has a ¯exibility in a selection of
control angles preserving the conservation of radiant
energy [2].

These ¯ux methods are used to show a non-physical
oscillation in solution on the boundary heat ¯ux,
which results from the ray e�ect. This wiggling beha-

vior is caused by the ®nite discretization of the con-
tinuous control angle. Further details about this
shortcoming in DOM is well described by Chai et al.

[6] and some remedies are also suggested. To avoid
this problem, many researchers have attempted to
improve the solution by using an angular quadrature

set as well as a spatial di�erencing scheme [6±10].
However, any concept, so far, could not totally correct
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the ray e�ects as long as the angular discretization is

used all over the domain. Therefore, another alterna-

tive for the conventional methods is needed to accu-

rately predict the radiative heat transfer. If the Monte-

Carlo method (MCM) [11,12] is employed to analyze

the radiative heat transfer, an exact solution can be

obtained within a statistical limit while almost elimi-

nating the ray e�ect. But this method is based on the

ray tracing technique so that it needs an enormously

large computational time. Maryama and Aihara [13]

presented a simple numerical method, Radiation El-

ement Method by Ray Emission Model (REM), in

order to analyze the radiative heat transfer in three-

dimensional arbitrary con®gurations with isotropic

scattering medium only. This method may be applied

to analyse radiative heat transfer in a complex geome-

try using an unstructured grid such as the one used in

®nite element analysis. The ray e�ects may be mini-

mized in this method, due to a large number of ray

emissions and correction of view factors. However,

when the isolated heat source is located in a medium

the ray e�ects still exist, due to a ®nite polar angle dis-

cretization. Ramankutty and Crosbie [14] presented a

modi®ed discrete ordinate method as another alterna-

tive by applying a separate semi-analytical treatment

for the intensities at the boundary, resulting in a re-

duction of the ray e�ects in a partially heated rec-

tangular geometry. However, this method is not

appropriate for an irregular complex geometry or for a

problem with scattering medium, since a semi-analyti-

cal solution is very di�cult to obtain. It is even more

di�cult for the analytical integration for an anisotropi-

cally scattering medium.

In this work, therefore, a combined Monte-Carlo

and ®nite-volume method (CMCFVM) is proposed to

deal with the ray e�ects in absorbing, emitting, and

isotropically scattering medium which is surrounded by

di�usely re¯ecting walls, when there is an isolated heat

source on one of them. The computational e�ciency
for FVM on the inner domain as well as the exactness
without ray e�ects for MCM at the boundary, is inte-

grated here in CMCFVM. As will be shown in the fol-
lowing, the Monte-Carlo method is applied at the
boundary instead of performing analytical integration

that is suggested by Ramankutty and Crosbie [14]
which is very di�cult for complex geometry with the
anisotropic scattering medium. The di�erence, there-
fore, from the previous studies, is that the CMCFVM

can easily be implemented for an anisotropically as
well as isotropically scattering problem with a complex
irregular geometry, which is the key point in this

study.

2. Formulations of the CMCFVM

The radiation intensity for an absorbing, emitting
and scattering gray medium at any position, ~r, along a
path, ~s is governed by

dI�~r, ~s�
ds

� ÿb0I�~r, ~s� � kaIb�~r�

� ss

4p

�
O 0�4p

I�~r, ~s�F�~s 04 ~s�dO 0
�1�

where ka and ss are the absorption and scattering coef-
®cients and b0=ka+ss is the extinction coe�cient.

F�~s 04 ~s� is the scattering phase function for a radi-
ation from incoming direction ~s

0
to scattered direction

~s: The ®rst term on the RHS in Eq. (1) represents an

attenuation of radiation intensity due to absorption
and out-scattering, while the last two terms account
for an augmentation of intensity due to the gas emis-

sion as well as in-scattering. The boundary condition
for a di�usely emitting and re¯ecting wall can be
denoted by

Nomenclature

I radiation intensity, W/(m2 sr)
Ib blackbody radiation intensity, W/(m2 sr)
~ni unit normal vector at the control volume

surface i
qR radiative heat ¯ux, W/m2

~r position vector
~s unit direction vector

Greek symbols

b0 extinction coe�cient, ka+ss, m
ÿ1

Ew wall emissivity
ka absorption coe�cient, mÿ1

ss scattering coe�cient, mÿ1

F scattering phase function, srÿ1

O solid angle, sr
o0 single scattering albedo, ss/b0

Superscripts
m, w radiation direction
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I�~rw, ~s� � EwIb�~rw�

� 1ÿ Ew

p

�
~s
0
, ~nw<0

I�~rw, ~s
0 � j ~s 0 � ~nw j dO 0

�2�

where Ew is the wall emissivity and subscript w denotes

the location of the wall, while ~nw is the unit normal
vector. The above equation illustrates that the leaving
intensity is a summation of emitted and re¯ected inten-

sities at the wall.
In order to attack the problem of ray e�ects in an

enclosure comprising a partially heated di�use wall,
the CMCFVM is to be developed here. It is then

applied to the analysis of the radiative heat transfer in
an absorbing, emitting, and isotropically scattering
medium for validation. To implement CMCFVM,

above all, the intensity is divided into two parts, i.e.,
Iw and Im, following the work by Modest [15].

I�~r, ~s� � I w�~r, ~s� � I m�~r, ~s� �3�
While Iw originates from the emission from the en-
closure wall, Im is traced back to the radiative source

term in the medium.
A substitution of Eq. (3) into Eq (1) results in two

radiative transfer equations for Iw and Im. While Iw is

governed by the following equation,

dI w�~r, ~s�
ds

� ÿb0I w�~r, ~s�

� ss

4p

�
O 0�4p

I w�~r, ~s 0 �F�~s 04 ~s�dO 0
�4�

with following boundary condition,

I w�~rw, ~s� � EwIb�~rw�

� 1ÿ Ew

p

�
~s
0 �~nw<0

I w�~rw, ~s
0 � j ~s 0 � ~nw j dO 0

�5�

the governing equation and boundary condition for Im

can be written as,

dI m�~r, ~s�
ds

� ÿb0I m�~r, ~s� � kaIb�~r�

� ss

4p

�
O 0�4p

I m�~r, ~s 0 �F�~s 04 ~s�dO 0
�6�

I m�~rw, ~s� � 1ÿ Ew

p

�
~s
0 �~nw<0

I m�~rw, ~s
0 � j ~s 0 � ~nw j dO 0 �7�

For the case of modi®ed DOM, Modest [15] and

Ramankutty and Crosbie [14] divided the RTE into
two equations by a di�erent way as follows,

dI w�~r, ~s�
ds

� ÿb0I w�~r, ~s� �8�

dI m�~r, ~s�
ds

� ÿb0I m�~r, ~s� � kaIb�~r�

� ss

4p

�
O 0�4p

�I w � I m��~r, ~s 0 �F�~s 04 ~s�dO 0
�9�

An analytic solution of equation (8) is then obtained
and substituted into Eq. (9). But when a scattering

term exists, the analytical solution is not available so
that Ramankutty and Crosbie [14] deal with the in-
scattering term in Eq. (9) using a semi-analytical treat-

ment and a numerical scheme. But this approach
requires a tremendous e�ort for application to a com-
plex irregular geometry or a problem with a special
boundary condition. Furthermore, a treatment of the

anisotropic scattering term introduces an additionally
formidable complication.
In this study, while the radiative transfer equation

for Iw, Eq. (4) is solved using the MCM rather than
trying to ®nd the analytic solution, the radiative trans-
fer equation for Im, Eq. (6) is solved by FVM. The

reason for selecting the MCM in solving Eq. (4) is that
it can be successfully applied to obtain the exact sol-
ution within the statistical limit without incurring ray
e�ects. Moreover this method can easily be extended

to a complex geometry with anisotropic scattering.
In order to implement FVM, Eq. (6) is integrated

over a control volume and a control angle whereby the

discretization equation is obtained [2,3]. Then, a step
scheme is introduced such that a downstream facial
intensity is set equal to the upstream nodal value [3]. It

is not only a simple and convenient procedure, but
also ensures positive intensity while not considering a
geometric and directional complexity. Since the emis-

sion from the wall is taken into account in Eq. (5)
which is solved by the MCM as stated above, here in
FVM only a re¯ection term is considered as rep-
resented in Eq. (7). A derivation of the ®nite volume

method for radiation has already been described and
easily found in the literature [3,4] it is, therefore, rec-
ommended to refer to them for details.

Using the MCM, the radiation emitted from the
wall is solved by tracing the trajectories of a certain
number of particles. Although there are many excellent

review papers [16,17], the procedure adopted in the
work of Taniguchi et al. [11] is followed here, i.e. the
READ (Radiant Energy Absorption Distribution)
method. This method computes the exchange factors

involved between elements to determine the radiative
heat transfer. Once these factors are obtained for a
speci®c problem, a di�erent set of boundary conditions

can be imposed without re-computing the exchange
factors. Usually a very large number of bundles are
chosen to simulate the radiation emitted from each

wall element and then their trajectories are traced to
estimate the heat ¯ux or temperature. For the
CMCFVM, the radiative heat ¯ux at the enclosure
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wall can be obtained by superimposing each ¯ux com-
ponent which is calculated from the MCM and FVM,

respectively.

3. Results and discussions

As shown in Fig. 1, the CMCFVM is now applied
to a quadrilateral geometry with an isolated boundary

heat source. This quadrilateral geometry has been
widely used for testing the method for radiative heat
transfer in an irregular geometry [12,18]. While the left

wall is wholly or partially hot (1000 K) and black, the
other walls are cold (300 K) and black with cold
medium (300 K). The spatial grid used here is (Nx �
Ny)=(21 � 21) for all the cases presented below. In

order to validate the present codes of the MCM and
FVM, several preliminary calculations were performed
for a two-dimensional rectangular geometry as well as

the quadrilateral containing an absorbing, emitting
medium. The results obtained were found to be in a
very good agreement with the exact solutions. The pre-

sent FVM has also been successfully applied to several
problems [3,12]. Since the MCM requires a large num-
ber of energy bundles to produce a su�ciently accurate

solution, the number of energy bundles was set to 1 �
107. The variance of the solution of the Monte-Carlo
simulation could be estimated by carrying out several
runs with di�erent random number generators. The

statistical error for the wall heat ¯ux induced by the
MCM was observed to be within 1%.
Fig. 2 represents the wall heat ¯ux distribution

along the periphery of the quadrilateral in which the
absorbing, emitting, and isotropic scattering medium

has an extinction coe�cient, b0=1 mÿ1 and a scatter-

ing albedo, o0=0.5, respectively. It is noted that only
an upper half of the left wall is hot. The heat ¯ux is
non-dimensionalized by the blackbody emissive power

of the hot wall. In Fig. 2(a), the solutions by FVM
with a di�erent number of control angles are compared
to that of the MCM. The ray e�ects are clearly recog-

nized by a wiggling behavior. It reveals that the ray
e�ects are seen reduced by simply increasing the num-

ber of angular discretization in FVM, but they cannot
be totally eliminated. Based on the results in Fig. 2(a),
the presence of the ray e�ect is more conspicuous in

such problems that have an isolated heat source for
FVM. Therefore, the ¯ux methods such as FVM and
DOM need to be corrected for the problem with a

localized heat source to deal with the ray e�ects.
The CMCFVM uses the concept of dividing the

intensity into two parts. The wall heat ¯ux is then
obtained by adding the heat ¯ux obtained by the
MCM to that by FVM, which is distinctly illustrated

in Fig. 2(b). It shows a remarkable accuracy of the
CMCFVM that is almost comparable to the MCM

with only 10±20% of computational time required by
the MCM.
Fig. 3 shows the e�ect of the size of the isolated

heat source on the wall heat ¯ux along the periphery
using the MCM, CMCFVM, and FVM. A whole,
half, and quarter section heating of the left wall are

considered. The isothermal medium (300 K) has an
extinction coe�cient, b0=1 mÿ1 and scattering albedo,

o0=0.5, respectively. As the heating size gets smaller,
the ray e�ects are shown to increase when FVM is
used. The CMCFVM is still observed to represent a

very accurate result while keeping a computational
e�ciency.

The e�ects of scattering albedo on the non-dimen-
sionalized wall heat ¯ux are examined for the scatter-
ing albedo of 0.2, 0.5 and 0.8 in Fig. 4. As the

scattering albedo decreases, absorption dominates the
transport and more radiation is absorbed so that the
wall heat ¯ux gets smaller. While the results by FVM

show a wiggling behavior as well as a signi®cant inac-
curacy, the CMCFVM shows none of the ray e�ects

and inaccuracy in the ®gure.
Fig. 5 illustrates the e�ects of extinction coe�cient

on the wall heat ¯ux when the scattering albedo is

o0=0.5. As the extinction coe�cient gets smaller, the
results by FVM deviate more from the Monte-Carlo
solutions, since less energy is absorbed by the medium.

Therefore, it is shown that the ray e�ects become more
pronounced in the optically thinner case than the opti-

cally thicker case. In this case, the CMCFVM also
yields very accurate results compared with those by the
MCM.

In order to check the computational e�ciency of the
CMCFVM, the computation time required by FVM,

Fig. 1. Schematic of a quadrilateral with a body-®tted coordi-

nate grid system.
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CMCFVM and MCM on a IBM-PC machine with an

Intel-450 processor are listed in Table 1 for various

albedo. As the scattering albedo increases, the compu-

tation time required for FVM increases, since more

iteration is needed to resolve the in-scattering as well

as out-scattering term. Similarly, the MCM and

CMCFVM also demand more time as the scattering

albedo increases, since the energy bundles necessarily

travel longer distances due to stronger scattering

e�ects. While the CMCFVM requires longer compu-

tation time than FVM, which not only lacks in accu-

racy, but also induces the ray e�ects, the CMCFVM

only needs about 23% of computation time spent by

the MCM in generating accurate solutions comparable

to those by MCM.

While a radiative heat transfer in an irregular

Fig. 2. Non-dimensional radiative heat ¯ux along the periphery of the wall.
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geometry with absorbing, emitting, and anisotropic

scattering medium was already analyzed using the
MCM by Parthasaranthy et al. [12], the FVM was also
applied to an anisotropic scattering problem by Baek

and Kim [19]. Since the CMCFVM makes simul-
taneously use of the merits of both the MCM and the
FVM, it would be easily applied to other irregular

complex geometries with a high computational
e�ciency even when accompanied by the anisotropic
scattering e�ect.

Fig. 3. E�ect of the heater size on the non-dimensional radiative heat ¯ux along the periphery of the wall: (a) whole left wall heat-

ing; (b) half wall heating; or (c) a quarter wall heating.

Table 1

Comparison of CPU time (b0=1 mÿ1)

(Ny�Nf)=(18� 24)

o0 MCM FVM CMCFVM

Quadrilateral 0.2 46,182 251 11,072

0.5 56,460 257 13,477

0.8 73,389 302 17,353
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4. Conclusions

The radiative heat transfer in an absorbing, emitting,

and isotropic scattering medium with an isolated

boundary heat source is analyzed using the MCM and

the ®nite-volume method (FVM). Based on these

results, in this study, however, the combined Monte-

Carlo and ®nite-volume method (CMCFVM) has been

proposed and is preferred by making use of the merits

of the two methods. Thereby, it was clearly shown that

the ray e�ects could be eliminated with a good compu-

tational e�ciency in a two-dimensional irregular en-
closure containing a scattering medium with an iso-

lated heat source.
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